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Abstract

Consecutive prime numbers have been shown to exhibit bias in their reduced
residue classes using simple statistics[7]. Here we uncover the same bias using
reconstructability analysis, an information-theoretic machine-learning method-
ology[11], which captures the bias as “uncertainty reduction” in a probabilistic
graphical model of the prime residue class data. Deeper exploration of the data
using this method uncovered further gains in uncertainty reduction from more
complex models using residue classes of multiple prime modulo.

Introduction

The 2016 paper by Lemke Oliver and Soundararajan[7] found statistically sig-
nificant bias within pairs of consecutive prime number residue classes. The
residue class (mod q), r, of n (mod q) is the set of remainders, or residues,
left over after dividing an integer, n, by another integer, q. Lemke Oliver and
Soundararajan found was that consecutive prime numbers would tend not to
have the same residue class for the the same values of q.

π(x0; 5, (A,B)) A1 A2 A3 A4 p(B)
B1 0.0462 0.0637 0.0601 0.0799 0.2499
B2 0.0750 0.0444 0.0704 0.0601 0.2499
B3 0.0743 0.0676 0.0444 0.0637 0.25
B4 0.0544 0.0743 0.0750 0.0462 0.2499

p(A) 0.2499 0.2499 0.25 0.2499 ≈ 1.0

Table 1: Probabilities of consecutive prime residue class (mod 5) tuples in the
first 108 consecutive primes.
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Table 1 shows this bias most clearly along the diagonal representing the probabil-
ities of consecutive primes sharing the same residue (mod 5). Stated information-
theoretically, we would say that knowledge of a prime’s residue (mod 5) cap-
tures information, or reduces our uncertainty, of the residue (mod 5) of the next
prime.

H(x) = −
n∑
j

pj log2pj (1)

To quantify uncertainty reduction we find the entropy of a particular model by
applying Shannon’s entropy[10] equation (1) to the contingency table built for
a particular model from the data. This entropy value is compared that of a
reference model to determine by how much the uncertainty is reduced by the
particular model over the reference model. If we are using a uniform reference
model then this measurement tells us how much better than a random number
generator this model would be at reconstructing the data being analyzed.

Methodology - Reconstructability Analysis

Reconstructability analysis (RA) is based on the work of Ashby[1] and was
developed in the systems community (Klir[4], Conant[2], Krippendorf [6], and
others). A general overview is provided by Zwick[11], as well as a number of
examples of RA applications in the fields of healthcare with Froemke[3], cellular
automata with Shu[12], and genetics with Kramer[5].

Reconstructability analysis can be used to find and fit models in categorical data
using information-theoretic methods, as described above, or using set-theoretical
methods not explored in this paper. Information-theoretic RA is implemented
by the open source OCCAM software[8], which is also provided as a web service
application by the Systems Science department at Portland State University[9].

OCCAM searches a lattice of structures representing the possible RA models
in a hierarchy, from the independence model at the bottom to the “saturated”
model at the top. The saturated model includes every variable in the data and
represents the maximum possible complexity and minimum possible uncertainty.

If we compile a dataset of consecutive prime residues, we should be able to
find a reduction in uncertainty for the model outlined by Lemke Oliver and
Soundararajan using this method.

Data - Consecutive Prime Residue Classes

Our data consists of the residue classes (mod {3, 4, 5, 6, 7, 8, 9, 11, 13, 16}) of
the first 108 consecutive primes, with exception to the first 10 for convenience.
The variables for each residue class are in Table 2.
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Variable Cardinality Description
A 2 Last prime residue (mod 3)
B 2 Last prime residue (mod 4)
C 4 Last prime residue (mod 5)
D 2 Last prime residue (mod 6)
E 6 Last prime residue (mod 7)
F 4 Last prime residue (mod 8)
G 6 Last prime residue (mod 9)
H 10 Last prime residue (mod 11)
I 12 Last prime residue (mod 13)
J 8 Last prime residue (mod 16)
ZA 2 Current Prime residue (mod 3)
ZB 2 Current Prime residue (mod 4)
ZC 4 Current Prime residue (mod 5)
ZD 2 Current Prime residue (mod 6)
ZE 6 Current Prime residue (mod 7)
ZF 4 Current Prime residue (mod 8)
ZG 6 Current Prime residue (mod 9)
ZH 10 Current Prime residue (mod 11)
ZI 12 Current Prime residue (mod 13)
ZJ 8 Current Prime residue (mod 16)

Table 2: Residue class data variables, with cardinalities.

Table 3 shows a sample of this dataset with variables defined in Table 2. While
the dataset contains all the IVs (independent variables) and DVs (dependent
variables), each analysis ignores all but one of the DVs.

An OCCAM Search analyzes models of IVs and the DV, looking for models
which maximize uncertainty reduction in the DV. After a model is found, an
OCCAM Fit will build joint probability tables for the model components, from
which a decision tree can be built.

From the Lemke Oliver & Soundararajan paper, we should expect an OCCAM
Search to find uncertainty reduction in models including the current and pre-
vious prime of the same modulo, e.g. AZA, BZB , etc. Doing a Fit on these
models should generate a contingency table that aproximates the same results
in the LO&S paper.

Results - Uncertainty Reduction

When searching loop-less models a clear tendency was found for models com-
bining the residues of prime moduli. The best models for many of the DVs, and
especially the prime moduli DVs, was ACEHI which is the model using all of
the prime moduli in the data.
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A B C D E F G H I J ZA ZB ZC ZD ZE ZF ZG ZH ZI ZJ

2 3 2 5 5 7 2 3 8 15 2 1 3 5 4 5 8 9 1 5
2 1 3 5 4 5 8 9 1 5 2 3 4 5 3 3 5 4 7 11
2 3 4 5 3 3 5 4 7 11 1 1 1 1 5 5 7 6 9 13
1 1 1 1 5 5 7 6 9 13 1 3 2 1 4 3 4 1 2 3
1 3 2 1 4 3 4 1 2 3 2 3 1 5 1 7 8 5 6 7
2 3 1 5 1 7 8 5 6 7 1 1 3 1 3 1 1 7 8 9
1 1 3 1 3 1 1 7 8 9 1 3 4 1 2 7 7 2 1 15
1 3 4 1 2 7 7 2 1 15 2 3 3 5 6 3 2 6 5 3
2 3 3 5 6 3 2 6 5 3 2 1 4 5 5 1 8 1 11 9

Table 3: A sample of prime residue class data, IVs on the left are residue classes
of PN−1, DVs on the right are the same residue classes of PN .

ID Model Level ΔDF α Information %ΔH(DV) ΔBIC Inc. α Prog. %C(Data) %cover
47 ABCDEFGHIJZc 10 13271037 0 1 7.7409 -222999094.7 1 45 39.6263 3.125
46 IV:ACDEFGHIJZc 9 6635517 0 1 7.7409 -100768300.2 1 42 39.6263 6.25
45 IV:BCDEFGHIJZc 9 6635517 0 1 7.7409 -100768300.2 1 43 39.6263 6.25
44 IV:ABCDEGHIJZc 9 3317757 0 1 7.7409 -39652902.99 1 39 39.6263 12.5
43 IV:BCDEFGHIZc 8 829437 0 0.99094402 7.6708 5989281.623 1 32 39.562 25
42 IV:ACDEFGHIZc 8 829437 0 0.99094402 7.6708 5989281.623 1 36 39.562 25
41 IV:ABCDEFGHIZc 9 1658877 0 0.99094402 7.6708 -9289567.689 1 42 39.562 12.5
40 IV:ABCDEFHIJZc 9 2211837 0 0.98793839 7.6476 -19539975.5 1 39 39.5401 6.25
39 IV:ABCDEHIJZc 8 552957 0 0.98793839 7.6476 11017723.12 1 29 39.5401 25
38 IV:ABCDEGHIZc 8 414717 0 0.98642803 7.6359 13531782.11 1 37 39.5295 25
37 IV:ABCEGHIZc 7 207357 0 0.98642803 7.6359 17351494.44 1 28 39.5295 50
36 IV:ACDEFHIZc 7 138237 0 0.98497423 7.6246 18593529.74 1 31 39.5189 50
35 IV:ACEFHIZc 6 69117 0 0.98497423 7.6246 19866767.18 1 25 39.5189 100
34 IV:ABCDEFHIZc 8 276477 0 0.98497423 7.6246 16047054.85 1 32 39.5189 25
33 IV:ABCEFHIZc 7 138237 0 0.98497423 7.6246 18593529.74 1 35 39.5189 50
32 IV:BCDEFHIZc 7 138237 0 0.98497423 7.6246 18593529.74 1 31 39.5189 50
31 IV:CDEFHIZc 6 69117 0 0.98497423 7.6246 19866767.18 1 24 39.5189 100
30* IV:CEGHIZc 5 51837 0 0.98424046 7.6189 20169328.06 0 23 39.5134 100
29 IV:ABCDEHIZc 7 69117 0 0.98351178 7.6133 19835379.44 1 26 39.5082 50
28 IV:ABCEHIZc 6 34557 0 0.98351178 7.6133 20471998.16 0 22 39.5082 100
27 IV:BCDEHIZc 6 34557 0 0.98351178 7.6133 20471998.16 0 21 39.5082 100
26 IV:ACDEHIZc 6 34557 0 0.98279785 7.6078 20456675.42 1 24 39.5029 50
25* IV:ACEHIZc 5 17277 0 0.98279785 7.6078 20774984.78 0 17 39.5029 100
24* IV:CDEHIZc 5 17277 0 0.98279785 7.6078 20774984.78 0 18 39.5029 100
23* IV:CEGHZc 4 4317 0 0.77355558 5.988 16522867.42 0 16 37.889 100
22 IV:ABCEHZc 5 2877 0 0.77349646 5.9876 16548124.28 1 19 37.8883 100
21 IV:BCDEHZc 5 2877 0 0.77349646 5.9876 16548124.28 1 20 37.8883 100
20* IV:CDEHZc 4 1437 0 0.773444 5.9872 16573524.21 0 12 37.8881 100
19* IV:ACEHZc 4 1437 0 0.773444 5.9872 16573524.21 0 13 37.8881 100
18* IV:CDEIZc 4 1725 0 0.74289985 5.7507 15912667.01 0 14 37.583 100
17* IV:ACEIZc 4 1725 0 0.74289985 5.7507 15912667.01 0 15 37.583 100
16* IV:CEGZc 3 429 0 0.55980145 4.3334 12006801.98 0 10 36.0308 100
15* IV:ACEZc 3 141 0 0.55979122 4.3333 12011887.64 0 9 36.03 100
14* IV:CDEZc 3 141 0 0.55979122 4.3333 12011887.64 0 8 36.03 100
13* IV:ACHZc 3 237 0 0.49048893 3.7968 10522723.14 0 7 34.8074 100
12* IV:CDHZc 3 237 0 0.49048893 3.7968 10522723.14 0 7 34.8074 100
11* IV:CEZc 2 69 0 0.32081986 2.4834 6884305.592 0 5 32.6711 100
10* IV:CGZc 2 69 0 0.31871201 2.4671 6839065.995 0 4 32.9222 100
9* IV:ACZc 2 21 0 0.31871053 2.4671 6839918.451 0 3 32.9204 100
8* IV:CDZc 2 21 0 0.31871053 2.4671 6839918.451 0 2 32.9204 100
7* IV:CHZc 2 117 0 0.28328243 2.1929 6077776.633 0 6 32.2527 100
6* IV:CZc 1 9 0 0.17264152 1.3364 3705142.314 0 1 30.4308 100
5* IV:EZc 1 15 0 0.01267883 0.0981 271842.2082 0 1 26.9375 100
4* IV:GZc 1 15 0 0.01003313 0.0777 215059.1452 0 1 26.3393 100
3* IV:AZc 1 3 0 0.01003277 0.0777 215272.5338 0 1 26.3393 100
2* IV:DZc 1 3 0 0.01003277 0.0777 215272.5338 0 1 26.3393 100
1* IV:Zc 0 0 1 0 0 0 0 0 25.0004 100

Table 4: OCCAM Search of loopless models for directed residue class (mod 5),
ZC
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observed data calculated model
C freq Zc=1 Zc=2 Zc=3 Zc=4 Zc=1 Zc=2 Zc=3 Zc=4 rule #correct %correct p(rule) p(margin)
1 24999432 18.493 30.019 29.718 21.77 18.493 30.019 29.718 21.77 2 7504611 30.019 0 0
2 25000399 25.496 17.757 27.02 29.727 25.496 17.757 27.02 29.727 4 7431869 29.727 0 0
3 25000130 24.044 28.175 17.77 30.011 24.044 28.175 17.77 30.011 4 7502895 30.011 0 0
4 25000024 31.966 24.051 25.492 18.492 31.966 24.051 25.492 18.492 1 7991430 31.966 0 0

99999985 24.999 25 25 25 24.999 25 25 25 2 30430805 30.431

Table 5: OCCAM Fit results for the CZC model, with N = 108 the calculated
model matches the observed almost exactly and future Fit tables will show only
the caclulated model.

DV Model Level ΔDF Alpha Information ΔH(DV) ΔBIC Inc. Alpha Progenitor %C(Data) % Cover
Zc IV:CZc 1 9 0 0.17264152 1.3364 3705142.314 0 1 30.4308 100
Zc IV:CEZc 2 69 0 0.32081986 2.4834 6884305.592 0 5 32.6711 100
Zc IV:ACEZc 3 141 0 0.55979122 4.3333 12011887.64 0 9 36.03 100
Zc IV:ACEHZc 4 1437 0 0.773444 5.9872 16573524.21 0 13 37.8881 100
Zc IV:ACEHIZc 5 17277 0 0.98279785 7.6078 20774984.78 0 17 39.5029 100

Table 6: Best model per level of a loopless OCCAM directed search for pn
(mod 5), ZC , up to the best overall model at level 5.

Looking at the single variable models at Level 1 of the OCCAM Search results
in Table 4, we see that the model CZc does indeed reduce the uncertainty, and
does it better than any other model at the same level. Doing a Fit on this
model shows the joint probability which demonstrates the matching bias along
the diaganol against repeating residue classes.

Looking again at the Search results in Table 4 we see that this model is far
from the best at reducing uncertainty. If we look at the models in Level 2 we
see that every model of 3 variables improves on the uncertainty reduction for 2
variables, with the best model (CEZC) improving significantly over the single
variable CZC model.

Each additional level provides similar improvements, with the best models build-
ing on the one below by adding an additional prime residue class variable, Table
6 and Figure 1.

Searching without the restriction to loopless models produces a similar increase
in uncertainty reduction as new variables are added up to the top of the search
at Level 10, as in Figure 2. However, the %ΔH(DV) for “loopy” models does
not reach the maximum seen in the loopless model search.

If we look at uncertainty reduction over the prime DVs in 3 we also see a trend of
increasing uncertainty reduction, with the best overall reduction being the model
ACEHIZi where we use the previous prime residue classes pn−1 (mod q ∈
{3, 5, 7, 11, 13}) to predict the current prime residue class, pn (mod 13).

As we increase the number of prime IVs and the size of the prime DV in our
model, we also see a steady increase in uncertainty reduction. If we do a Fit
on the best model found across all DVs, ACEHIZi, we get a table of 5760
rows representing all the possible combinations of the residue classes (mod q ∈
{3, 5, 6, 11, 13}), see Table 7.
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Figure 1: Best loopless models of uncertainty reduction in pn (mod 5), ZC ,
proceeding up the lattice levels.

Figure 2: Best overall models of uncertainty reduction in pn (mod 5), ZC , pro-
ceeding up the lattice levels.

Figure 3: Best loopless models of uncertainty reduction across DVs.
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A C E H I freq Zi=1 Zi=2 Zi=3 Zi=4 Zi=5 Zi=6 Zi=7 Zi=8 Zi=9 Zi=10 Zi=11 Zi=12 rule #correct %correct
1 4 4 4 1 17333 0.9 0.121 17.608 5.792 36.958 1.402 2.285 0.9 10.737 22.518 0.548 0.231 5 6406 36.958
1 3 4 5 1 17328 0.381 4.097 1.876 18.813 36.559 15.178 1.46 3.295 9.447 2.383 5.996 0.514 5 6335 36.559
1 4 4 5 1 17380 0.69 5.903 2.532 4.114 36.525 20.086 2.192 0.04 10.115 17.319 0.316 0.167 5 6348 36.525
1 2 4 5 1 17397 0.023 4.667 1.77 22.349 36.322 1.293 0.362 2.316 9.622 14.411 5.834 1.029 5 6319 36.322
1 1 5 5 1 17378 2.825 9.472 0.075 5.933 0.472 20.474 0 4.35 1.847 17.706 35.925 0.921 11 6243 35.925
1 2 4 6 1 17372 0.035 4.358 1.997 3.454 35.787 1.658 19.382 3.189 8.41 14.742 6.061 0.927 5 6217 35.787
1 4 4 10 1 17304 0.029 5.727 12.962 4.537 34.316 19.626 2.335 0.89 1.456 17.539 0.341 0.243 5 5938 34.316
1 4 4 2 1 17485 0.532 4.633 12.742 0.063 34.058 19.234 2.162 0.698 7.429 17.947 0.32 0.183 5 5955 34.058
... ...

99999985 8.333 8.334 8.333 8.333 8.333 8.334 8.333 8.334 8.335 8.333 8.333 8.333 2 27479970 27.480

Table 7: Sample of joint probability table for the OCCAM Fit of model
ACEHIZi with p(margin) and p(rule) columns excluded as they were 0 for
all rows.

What is interesting is that we have many combinations with extremely low
frequencies, including one in this sample that has 0 occurrences where pn ≡ 7
(mod 13) when pn−1 ≡ (1, 1, 5, 5, 1) (mod (3, 5, 7, 11, 13)), despite theA1C1E5H5I1
state having a frequency of 17378 in the first 108 primes. There are many of
these 0 states for each of the ZI states, and it would be interesting to see how
many of these cases would remain unseen in larger prime tuples.

Discussion

The results show that consecutive prime number residue classes have structure,
such that a relatively simple model of five residue classes pn−1 (mod {3, 5, 7, 11, 13})
can capture information about the next prime number residue class pn (mod 13)
by a significant margin in the first 108 consecutive primes.

If we look at the best model, ACEHIZi, each of the 5760 combinations for
possible residues pn−1 (mod q ∈ {3, 5, 7, 11, 13}) could be represented by each
of the 5760 reduced residue classes mod 15015. 15015 is 1

2 of 30030, which is
p#7, the 7th primorial number, the product of the first 7 primes, 1 ∗ 2 ∗ 3 ∗ 5 ∗
7 ∗ 11 ∗ 13. Since residues (mod 2) provide no useful information (all primes are
≡ 1 (mod 2)) we should be able to see equivalent uncertainty reduction using
a single variable of of pN (mod 1

2p#q), though this hypothesis remains to be
tested.

Additional research might seek to test these models against sets of larger prime
numbers, possibly looking to quantify the rate at which uncertainty reduction is
reduced or the theoretical limits of uncertainty reduction possible given increas-
ing sets of prime number residue classes and unlimited computational resource.

Conclusion

We have demonstrated how reconstructability analysis can be applied to an
exploration of number theory via modular arithmetic and prime numbers. Other
applications of machine learning to number theory are likely worth pursuing.
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